Activation of mTORC1 in collecting ducts causes hyperkalemia.

نویسندگان

  • Zhenguo Chen
  • Heling Dong
  • Chunhong Jia
  • Qiancheng Song
  • Juan Chen
  • Yue Zhang
  • Pinglin Lai
  • Xiaorong Fan
  • Xuan Zhou
  • Miao Liu
  • Jun Lin
  • Cuilan Yang
  • Ming Li
  • Tianming Gao
  • Xiaochun Bai
چکیده

Mutation of TSC (encoding tuberous sclerosis complex protein) and activation of mammalian target of rapamycin (mTOR) have been implicated in the pathogenesis of several renal diseases, such as diabetic nephropathy and polycystic kidney disease. However, the role of mTOR in renal potassium excretion and hyperkalemia is not known. We showed that mice with collecting-duct (CD)-specific ablation of TSC1 (CDTsc1KO) had greater mTOR complex 1 (mTORC1) activation in the CD and demonstrated features of pseudohypoaldosteronism, including hyperkalemia, hyperaldosteronism, and metabolic acidosis. mTORC1 activation caused endoplasmic reticulum stress, columnar cell lesions, and dedifferentiation of CD cells with loss of aquaporin-2 and epithelial-mesenchymal transition-like phenotypes. Of note, mTORC1 activation also reduced the expression of serum- and glucocorticoid-inducible kinase 1, a crucial regulator of potassium homeostasis in the kidney, and decreased the expression and/or activity of epithelial sodium channel-α, renal outer medullary potassium channel, and Na(+), K(+)-ATPase in the CD, which probably contributed to the aldosterone resistance and hyperkalemia in these mice. Rapamycin restored these phenotypic changes. Overall, this study identifies a novel function of mTORC1 in regulating potassium homeostasis and demonstrates that loss of TSC1 and activation of mTORC1 results in dedifferentiation and dysfunction of the CD and causes hyperkalemia. The CDTsc1KO mice provide a novel model for hyperkalemia induced exclusively by dysfunction of the CD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells.

Nephrogenic diabetes insipidus (NDI) is the most common renal side effect in patients undergoing lithium therapy for bipolar affective disorders. Approximately 2 million US patients take lithium of whom ∼50% will have altered renal function and develop NDI (2, 37). Lithium-induced NDI is a defect in the urinary concentrating mechanism. Lithium therapy also leads to proliferation and abundant re...

متن کامل

A role for Wnt-4 in renal fibrosis.

Wnt-4 is a secreted glycoprotein that is critical for genitourinary development but found only in the most distal collecting duct epithelium in the normal murine adult kidney. Wnt4 expression is induced throughout the collecting ducts in four murine models of renal injury that produce tubulointerstitial fibrosis: folic acid-induced nephropathy, unilateral ureteral obstruction, renal needle punc...

متن کامل

Chronic Hyperkalemia Impairs Ammonium Transport

Introduction Previously we demonstrated in rats that chronic hyperkalemia had no effect on ammonium secretion by the proximal tubule in vivo but that high K+ concentrations inhibited ammonium absorption by the medullary thick ascending limb in vitro. These observations suggested that chronic hyperkalemia may reduce urinary ammonium excretion through effects on medullary transport events. To exa...

متن کامل

Nongenomic stimulation of vacuolar H+-ATPases in intercalated renal tubule cells by aldosterone.

Renal collecting ducts play a critical role in acid-base homeostasis by establishing steep transepithelial pH gradients necessary for the almost complete reabsorption of bicarbonate and the effective secretion of ammonium into the urine. The mechanisms of urine acidification in collecting ducts involve active, electrogenic hydrogen (H+) secretion and, less importantly, potassium (K+)-H+ exchang...

متن کامل

Association of blood pressure with genetic variation in WNK kinases in a white European population.

Mutations in a recently discovered family of protein kinases are responsible for an autosomal-dominant form of inherited hypertension, known as Gordon’s syndrome or pseudohypoaldosteronism type II (PHAII).1 The phenotype also includes hyperkalemia and hyperchloremic metabolic acidosis.1 The name of this kinase family is WNK (with no lysine [K]) because of the absence of a lysine in subdomain II...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2014